L-Bus Proposal

CDS Meeting, June 23, 2004
Paul Schwinberg, Daniel Sigg
Goal

- Eliminate the cross-connects used by EPICS controls
 - Simplify the EMI retrofit
- Replace with design that can operate in low noise environment
 - Mass-termination on backplane
 - Single controller with serial interface
 - Modern bus-type design for both analog and digital
- Clean up the power supplies
 - Locally regulated
- Support of legacy boards
Pros

- Drastic reduction of inter-system cabling
- Isolated power supplies
- Reduce susceptibility to EMI problems and noise injection
- Reduce documentation headaches because boards and interfacing go together
- Modifications are easier (new boards don’t require re-cabling)
- Going forth and back between two designs is straightforward
- Better testing (boards AND subsystems can be fully tested in the shop without a custom rig)
- Support for loading and storing a digital word
- Sound infrastructure for advanced LIGO?
Cons

- Increased complexity (nothing is simpler than a cable!)
- Custom scheme of mass-termination
- Requires a commitment/Are we locked in?
- Requires a lot of individual interfacing for legacy boards
Basic Layout

Host Computer

EPICS

Host Computer Interface

Front-End

Analog

Digital

Controller

User Boards
Analog Backplane

- 16 lines of analog readbacks
 - Each board selects one line
 - Single ADC on controller board that operates at 2048 Hz (16 lines x 16 addresses x 16 Hz)
 - GPS synchronized

- 4 analog addresses for multiplexing 16 analog readbacks on each board

- 8 analog control lines
 - Used by boards that need to adjust voltages during running
 - Typically DACs are on the user board
Digital Backplane

- Modern memory mapped architecture
- Multiplexed 16 bit address/16 bit data
 - Boards typically use a 8 bit board identification
 - Up to 128 words can be used locally
- Simple bus interface
 - Address strobe/write indicator/data latch
- Low speed to minimize EMI problems
- Supports zero activity during science running
- Separate power supply
Power Supplies

- **Voltages:**
 - +5V at 1A/board, digital, linear post-regulation
 - ±5V at 1A/board, analog, linear post-regulation
 - ±15V at 0.5A/board, analog, linear post-regulation
 - ±24V at 1A/board, unregulated, use for local post-regulation

- **Voltage monitoring**
 - ± 5% tolerance

- **On/off switch**
Form Factor

- **Eurocrate**
 - 6U height, 220 mm depth (60 mm deeper than current boards)
 - Full (21 slots) and half (10 slots) backplanes
 - EMI compliant enclosure
 - Support of legacy boards through 60 mm interface adapter

- **Stand-alone chassis**
 - Everything goes…

- *(Field module)*
Software

- **Dumb controller**
 - Supports reads, writes and read-modify-writes
 - Supports 16 Hz data dump of analog readbacks
 - Simple protocol to host computer (command, payload, return)

- **Host computer provides EPICS and DAQ interface**
 - Runs EPICS database
 - Talks to controller to set data values based on EPICS commands and to update readbacks
 - Implements data dump to DAQ system to avoid EDCU bottleneck and maintain timing information
Plan

- Prototype by end of year (optimistically)
 - Estimated costs: 10K-15K (buy crate, develop backplane, build power supply, develop controller, develop 1 user board and write software)
 - Support of high density SMD components in EE shop(?): ~15K
 - Support for EPROM/GAL/etc. burner in EE shop(?): ~5K

- Decision of go-ahead before LHO EMI retrofit is set into motion and depending on prototype results