Spin and Orbital Evolution of the Accreting Millisecond Pulsar SAX J1808.4-3658: Implications for Gravitational Wave Searches

Deepto Chakrabarty
Massachusetts Institute of Technology

Featuring Ph.D. thesis work of Jacob M. Hartman at MIT.

Collaborators:

MIT: Jacob M. Hartman, Jinrong Lin, Edward H. Morgan, David L. Kaplan
Monash: Duncan K. Galloway
Amsterdam: Alessandro Patruno, Michiel van der Klis, Rudy Wijnands
NASA/GSFC: Craig B. Markwardt
NRL: Paul S. Ray
Life History of Pulsars: Spin and Magnetic Evolution

1. Pulsars born with $B \sim 10^{12} \text{ G}$, $P \sim 20 \text{ ms}$. Spin-down due to radiative loss of rotational K.E.

2. If in binary, then companion may eventually fill Roche lobe. Accretion spins up pulsar to equilibrium spin period

$P_{eq} \approx 1 \text{ s} \left(\frac{B}{10^{12} \text{ G}} \right)^{6/7} \left(\frac{\dot{M}}{10^{-9} M_{\odot}/\text{yr}} \right)^{-3/7}$

3. Sustained accretion ($\sim 10^9 \text{ yr}$) attenuates pulsar magnetic field to $B \sim 10^8 \text{ G}$, leading to equilibrium spin $P \sim \text{few ms}$

4. At end of accretion phase (companion exhausted or binary disrupted), millisecond radio pulsar remains

For accreting pulsars, X-ray observations can measure spin by tracing rotating “hot spots”. If these X-ray pulsations persist for long enough, can also measure binary orbital parameters.
• Magnetically-channeled flow onto polar caps, hits at \(\sim 0.1 \, c \). (Requires \(B > 10^8 \) G)

• Gravitational potential energy released as X-rays,

\[
L = \dot{M} \left(\frac{GM}{R} \right)
\]

• Misaligned magnetic dipole axis: pulsations at spin period from X-ray hot spots at poles.

• Accretion adds mass and angular momentum to NS (measure torque)
“Bona Fide” Accretion-Powered Millisecond X-Ray Pulsars

Can measure spin and orbital parameters.

10 known examples, generally all X-ray transients with low mass accretion rates.
• Low-mass X-ray binaries with low accretion rates are subject to an ionization instability in their accretion disk. This leads to episodic accretion: X-ray transients

• Duty cycle is low: X-ray transients lie dormant for months or years, then become active for a few days or weeks when accretion disk instability is triggered.

• All known accretion-powered millisecond pulsars are X-ray transients (but see Galloway talk for complication....). Cannot continuously monitor spin and orbital evolution in these systems.

X-Ray Sources: Persistent versus Transient
Nuclear-Powered Millisecond X-Ray Pulsars (X-Ray Burst Oscillations)

- Thermonuclear X-ray bursts due to unstable nuclear burning on NS surface, lasting tens of seconds, recurring every few hours to days.

- Millisecond oscillations discovered during some X-ray bursts by RXTE (Strohmayer et al. 1996). Spreading hot spot on rotating NS surface yields “nuclear-powered pulsations”.

- Oscillations in burst tail not yet understood. Along with frequency drift, may be due to surface modes on NS. (Heyl; Piro & Bildsten; Cooper & Narayan)

- Burst oscillations reveal spin, but not possible to measure orbital parameters or spin evolution, since bursts only last a few tens of seconds.
• We find that $v_{\text{high}} < 730$ Hz (95% confidence) (Chakrabarty et al. 2003)

• Recycled pulsars evidently have a maximum spin frequency that is well below the breakup frequency for most NS equations of state. Fastest known radio pulsar is PSR J1748-2446ad (Ter 5) at 716 Hz.

• Detailed shape of distribution still unclear. (Sharp cutoff? Pileup? Falloff?) Need more systems!

• Submillisecond pulsars evidently relatively rare, if they exist.

• Recent report of 1122 Hz burst oscillation in XTE J1739-285 (Kaaret et al. 2007), but statistical significance questionable (actual significance is only $\sim 3\sigma$). Remains an interesting candidate.
How to explain cutoff in spin distribution?

1. **Equilibrium spin not yet reached?**
 - Unlikely, since spin-up time scale is short compared to X-ray lifetime (but EXO 0748-676 ?)

2. **Low breakup frequency for NSs?**
 - Requires stiff, exotic EOS with $M<1.5\ M_\odot$ and $R\sim16\ km$

3. **Magnetic spin equilibrium?** (e.g. Ghosh & Lamb 1979; Lamb & Yu 2005)
 - Depends on accretion rate and B. Take observed accretion rate range and apply disk-magnetosphere interaction relevant for weakly magnetic NSs (see Psaltis & Chakrabarty 1999).
 - Can reproduce spin distribution if ALL the objects have similar magnetic field $B \sim 10^8\ G$. However, this is inconsistent with our inference of a higher field in SAX J1808.4-3658 than in the other burst sources. (Pulsations in other sources?)

4. **Accretion torque balanced by gravitational radiation?** (Wagoner 1984; Bildsten 1998)
 - Gravitational wave torque $\propto \Omega^5$, from any of several models:
 - r-mode instability (Wagoner 1984; Andersson et al. 1999)
 - Accretion-induced crustal quadrupole (Bildsten 1998; Ushomirsky et al. 2000)
 - Large (internal) toroidal magnetic fields (Cutler 2002)
 - Magnetically confined “mountains” (Melatos & Payne 2005)
 - Strain of $h \sim 10^{-26}$ for brightest LMXBs (Bildsten 2002): Advanced LIGO?
 - Use long integrations to search for persistent GW emission from pulsars
Sensitivity of Current and Future Gravitational Wave Observatories

Adapted from D. Ian Jones (2002, Class. Quant. Grav., 19, 1255)
University of Southampton, UK
What do we know about the spin frequency evolution?

This will affect the ability to do long integrations for pulsar GW searches. For a pure accretion torque (no other torque contribution) near magnetic spin equilibrium,

\[\dot{\nu} = 4 \times 10^{-14} \left(\frac{\dot{M}}{0.01 \dot{M}_{\text{Edd}}} \right) \left(\frac{\nu}{600 \text{ Hz}} \right)^{-1/3} \text{ Hz s}^{-1} \]

where we have scaled to an accretion rate typical for X-ray transient outbursts. Assuming steady accretion, this corresponds to a decoherence time of

\[\tau = \frac{1}{\sqrt{\dot{\nu}}} \approx 60 \left(\frac{\dot{M}}{0.01 \dot{M}_{\text{Edd}}} \right)^{-1/2} \left(\frac{\nu}{600 \text{ Hz}} \right)^{-1/6} \text{ days} \]

Note that in the X-ray transients, there is only a significant accretion torque during the (short) outbursts. It would be interesting to know how the spin evolves during X-ray quiescence, when accretion is shut off.
Can we study the spin evolution of individual millisecond X-ray pulsars?

- In principle, accretion-powered millisecond pulsars ideal targets. Pulse timing during weeks-long active outburst allows precise measurement of spin and orbital parameters.

- Spin frequency derivatives have been measured during outbursts of several systems.

- **Complication:** Some millisecond X-ray pulsars subject to substantial pulse shape variability, both systematic and stochastic. This can potentially mimic spin evolution! (Hartman et al. 2007)

- **Consolation:** Not all millisecond X-ray pulsars have strong pulse shape noise, so accretion torque study during outburst is possible for some sources -- but only during active accretion. Spin derivatives of order $\sim 10^{-14}$ Hz/s have been measured (Galloway et al. 2002; Burderi et al. 2006, 2007; Papitto et al. 2007; Riggio et al. 2007)

- For sources with multiple outbursts, can also study long-term spin and orbital evolution by using outbursts spaced over several years. Best case is SAX J1808.4-3658, which has been observed in 1998, 2000, 2002, and 2005.
Long-Term Spin-down of the Accretion-Powered Millisecond Pulsar SAX J1808.4-3658

This spin-down cannot be due to accretion torques during outbursts, based on spin derivative limits during outbursts. The torque is occurring between outbursts, when there is no accretion.

Magnetic dipole spin-down?

- In the absence of accretion, this should always be present at some level.
- Requires $B < 1.5 \times 10^8$ G for consistency with measured spindown. For comparison, presence of accretion-powered pulsations over observed outburst flux range implies B in range $(0.4 - 12) \times 10^8$ G

Magnetic propeller spin-down?

- Consistent with long-term mass transfer

Gravitational wave spin-down?

- Requires mass quadrupole moment $Q < 4.4 \times 10^{36}$ g cm2 ($= 10^{-8} I$) for consistency with measured spin-down

Note that magnetic dipole spin-down with expected field strength easily explains data -- gravitational wave torque not required for this 401 Hz system. However, given Ω^5 torque dependence, GWs could easily still play an important role at ~ 700 Hz. It would be nice to repeat measurement for a faster rotator.
Orbital Evolution of the Accretion-Powered Millisecond Pulsar SAX J1808.4-3658

Hartman et al. 2007. (also Di Salvo et al. 2007)

- We expect orbital period to evolve on a 3 Gyr timescale due to mass transfer and angular momentum losses. Measured value is an order of magnitude faster! Explanation not clear.

- Interesting comparison: “black widow” radio pulsars which are ablating their low-mass companions through intense particle irradiation. At least 2 of these systems have large, varying orbital period derivatives that are quasi-cyclic on decade timescale (Arzoumanian et al. 1994; Doroshenko et al. 2001).

- There is some optical evidence that SAX J1808.4-3658 may be an active radio pulsar during X-ray quiescence (Burderi et al. 2003; Campana et al. 2004). If so, then it may be a black widow system as well. It will be interesting to monitor orbital evolution further, look for quasi-cyclic sign changes in derivative.

- Unexpectedly large orbital period derivatives have been measured in other low-mass X-ray binaries as well (4U 1820-30, EXO 0748-676, 4U 1822-371). This may complicate long GW integrations.
Summary

• Issues of importance for gravitational wave community:
 • Short-term spin evolution of millisecond X-ray pulsars during transient outbursts appears modest
 • Long-term spin evolution of SAX J1808.4-3658 is very modest, consistent with magnetic dipole spindown. Gravitational wave torque evidently unimportant for 400 Hz rotator.
 • Orbital evolution of LMXBs may be significant and variable.
 • The most luminous LMXBs do not have precisely known spins or orbits
 • Continuous X-ray timing of most LMXBs not possible
 • Long-term programmatic prospects for X-ray timing are uncertain

References:
 (arXiv:0708.0211)