PROGRESS ON S1 INTERSITE TRANSIENTS STUDY

The intersite RDS (frames containing AS_Q and PEM channels for both sites) has been produced for all but the last 2 days or so of S1.

The intersite RDS is available from fortress in:
/ldasdisks/S1cross/frames

Preliminary coherence studies of the primary channels revealed mainly self-inflicted coherence between sites (e.g. 2048 Hz and harmonics, 1 Hz and harmonics, 16 Hz and harmonics, 100 Hz and harmonics).

Preliminary runs of multi-channel coincidence code have not yet revealed greater than chance coincidence between glitches detected at each site.
AS_Q L1 and H1

Coherence over 10.7 hours

(due to dtt binning, coherence values inaccurate for BW)
L1 and H1 AS_Q, peak at 2048

these coherence values are accurate (no re-binning)
L1 and H1 AS_Q coherence at 6144

but not at 1024

2048 and harmonics
L1 and H1 AS_Q coherence at 176

only about 10.7 hours of data - could be a good clock chip
L1 and H1 AS_Q coherence at 250

another good clock?
and 290?
LLO and LHO coil magnetometers coherent at 100 and harmonics

Coherence inaccurate for BW due to binning
LHO and LLO coil magnetometers

Power spectrum

- Frequency (Hz): 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65
- Magnitude
- T0=31/08/2002 01:15:28
- Avg=331
- BW=0.0117178

Coherence

- Coherence values: 0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16
- Frequency (Hz): 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65
- T0=31/08/2002 01:15:28
- Avg=331
- BW=0.0117178
LLO and LHO radio channels: coherence at 16 Hz and harmonics (LLO radio not working)

Intersite coherence at 16 Hz and harmonics also found on several pairs of Bartington magnetometer channels

9
Coherence at 500 Hz between LHO coil magnetometer and LLO AS_Q

a mystery but probably self-inflicted.
LLO and LHO voltage monitors: persistent coherence near edge of peak

About 7 hours of data
LLO and LHO voltage monitors

Power spectrum

Coherence

12
Stand alone algorithm compares multi-channel coincidence for aligned and misaligned time series

3.5 Highest threshold
560 filter band
580 filter band
4 filter order
1 not used
8 number of channels
3 number of LLO channels that must exceed threshold to produce event
3 number of LHO channels that must exceed threshold to produce event

L0:PEM-EX_V1
L0:PEM-EX_V2
L0:PEM-LVEA_V3
L0:PEM-LVEA_V1
H0:PEM-MY_V1
H0:PEM-MY_V2
H0:PEM-LVEA2_V2
H0:PEM-LVEA2_V1

Total number of seconds: 42840

<table>
<thead>
<tr>
<th>Threshold</th>
<th>Events</th>
<th>Off Second Events</th>
<th>(on - off)</th>
<th>sqrt(on+off)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1.73205</td>
</tr>
<tr>
<td>2.9</td>
<td>4</td>
<td>5</td>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>2.7</td>
<td>23</td>
<td>20</td>
<td>3</td>
<td>6.55744</td>
</tr>
<tr>
<td>2.5</td>
<td>118</td>
<td>109</td>
<td>9</td>
<td>15.0665</td>
</tr>
<tr>
<td>2.3</td>
<td>632</td>
<td>675</td>
<td>-43</td>
<td>36.1525</td>
</tr>
<tr>
<td>2.1</td>
<td>3344</td>
<td>3406</td>
<td>-62</td>
<td>82.1584</td>
</tr>
<tr>
<td>1.9</td>
<td>13593</td>
<td>13649</td>
<td>-56</td>
<td>165.052</td>
</tr>
</tbody>
</table>

Nothing seen yet........ 13
PROGRESS ON S1 ENVIRONMENTAL DISTURBANCES
(with a focus on loose bolts)
Optical Levers

During S1 many peaks in H1 AS_Q matched peaks in optical lever servo signals
Summary:

ETMX op. lev.: 17.65, 31.6, 43.
ETMY op. lev.: 43 and about 53
ITMY op. lev.: 29.35, 46.5, 93
ITMX op. lev.: 29.35

John Z. and I showed that ETMY op. lev. was responsible for some major non-stationarity that he had detected.

Tightening bolts moved and reduced peaks:
Power spectrum

Frequency (Hz)

Magnitude

H1:SUS-ETMY_OPLEV_PERROR(REF0)
H1:SUS-ETMY_OPLEV_PERROR(REF2)
H1:SUS-ETMY_OPLEV_PERROR
200inlb

*T0=12/11/2002 04:23:33 *Avg=4 *BW=0.0117178
A number of people have been working on the optical lever problem, new servo filters have been installed and we are working out schemes to reduce the amplitudes of the resonances.

LN2 DEWARS AND LOCK LOSS
Large 1-2 per day MX seismic transient knocked us out of lock nearly every time during S1

Set up an accelerometer about 30m +X of MX station and one -X of the building. Three total including the one in the building

Struck various candidates with a padded 4x8 piece of lumber to get propagation delay times to each accelerometer.

Propagation delays from the transient matched those for the struck +X LN2 dewar. Accelerometer on dewar confirmed.

Transient went away after John W. and Kyle tightened bolts.

But smaller transients appeared to be coming from -X dewar.

Welding may be solution if leg stick and slip is the cause. John W. is instrumenting legs.